

 mix test.watch

 v1.4.0

 Table of contents

 	Changelog

 	mix test.watch

 	
 Modules

 	MixTestWatch

 	MixTestWatch.Config

 	MixTestWatch.MessageInbox

 	MixTestWatch.Path

 	MixTestWatch.PortRunner

 	MixTestWatch.Watcher

 	
 Mix Tasks

 	mix test.watch

 Changelog

v1.4.0 - 2025-10-21
	Updated for Elixir v1.19.

v1.3.0 - 2025-06-03
	Updated for OTP28.

v1.2.0 - 2024-03-05
	Relaxed the file_system dependency to allow for v1.x.

v1.1.2 - 2024-02-08
	Fixed terminal output text not always being displayed with colors.

v1.1.1 - 2023-09-02
	Fixed warning on Elixir v1.15.5.

v1.1.0 - 2021-08-30
	.heex files are now watched by default.

v1.0.3 - 2021-05-28
	Removed used of deprecated Elixir supervisor functions.

v1.0.2 - 2019-11-17
	Zombie killer script is run with bash to avoid platform specific issues with
sh implementations.

v1.0.1 - 2019-10-25
	Include zombie killer script in hex package.

v1.0.0 - 2019-10-25
	LiveView templates are now watched.

v0.9.0 - 2018-09-17
	Avoid starting application if --no-start is given.
	Hot runner removed.

v0.8.0 - 2018-07-30
	Application started on test run. Revert of v0.7 behaviour.

v0.7.0 - 2018-07-35
	No longer start application on test run.
	Do not watch the Ecto migration directory by default.

v0.6.0 - 2018-03-27
	Switch from fs to file_system for file system event watching.

v0.5.0 - 2017-08-26
	Windows support (Rustam @rustamtolipov)

v0.4.1 - 2017-06-21
	Revert to fs v0.9.1 to maintain Phoenix Live Reload compatibility.
https://github.com/phoenixframework/phoenix_live_reload/commit/e54bf6fb301436797ff589e0b76a047bb79b6870

v0.4.0 - 2017-04-22
	Emacs temporary files can no longer trigger a test run.

v0.3.3 - 2017-02-08
	Fixed a bug where arguments were not being correctly passed to the
test running BEAM instance.

v0.3.1 - 2017-02-04
	Fixed race condition bug on OSX where tests would fail to run when
files are changed.

v0.3.0 - 2017-01-29
	Test runs optionally print a timestamp (Scotty @unclesnottie)
	Paths can be ignored by watcher (Alex Myasoedov @msoedov)
	Paths can be ignored by watcher (Alex Myasoedov @msoedov)
	Ability to specify additional watched file extensions. (Dave Shah @daveshah)
	Erlang .hrl header files are now watched.
	The existing VM can now reused for running the tests with the HotRunner.
This gives us Windows support and a performance increase.
Sadly it cannot be used as the default due to a bug in the Elixir compiler.

v0.2.6 - 2016-02-28
	The terminal can now be cleared between test runs.
(Gerard de Brieder @smeevil)

v0.2.5 - 2015-12-31
	It is now possible to run addition tasks using mix config.
	Erlang .xrl and .yrl files are watched. (John Hamelink @johnhamelink)
	The shell command used to run the tasks can be specified (i.e. iex -S).
(John Hamelink @johnhamelink)
	Command line arguments are forwarded to tasks being run. (Johan Lind @behe)

v0.2.3 - 2015-08-23
	The _build directory is ignored, as well as deps/.
	Erlang .erl files are now watched.

v0.2.2 - 2015-08-22
	Tests now run once immediately after running the mix task. (Johan Lind @behe)
	Porcelain dependency removed.
	Switched from bash to sh for running shell commands.

 mix test.watch

[image: Build Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
Automatically run your Elixir project's tests each time you save a file.
Because Test-driven development (TDD)
is awesome.
Usage
Add it to your dependencies:
mix.exs
def deps do
 [
 {:mix_test_watch, "~> 1.0", only: [:dev, :test], runtime: false}
]
end
Optionally, add preferred_cli_env: ["test.watch": :test] for running mix test.watch in :test env by default.
It prevents the task from running :dev env config scripts.
mix.exs
def project do
 [
 ...
 preferred_cli_env: [
 "test.watch": :test
],
 ...
]
end
Run the mix task:
mix test.watch
Start hacking :)
Running Additional Mix Tasks
Through the mix config it is possible to run other mix tasks as well as the
test task. For example, if I wished to run the Credo code analysis
tool after my tests I would do so like this.
config/config.exs
use Mix.Config

if Mix.env == :dev do
 config :mix_test_watch,
 tasks: [
 "test",
 "credo",
]
end
Tasks are run in the order they appear in the list, and the progression will
stop if any command returns a non-zero exit code.
All tasks are run with MIX_ENV set to test.
Passing Arguments To Tasks
Any command line arguments passed to the test.watch task will be passed
through to the tasks being run. If I only want to run the tests from one file
every time I save a file I could do so with this command:
mix test.watch test/file/to_test.exs
Note that if you have configured more than one task to be run these arguments
will be passed to all the tasks run, not just the test command.
Running tests of modules that changed
Elixir's mix test provides a --stale option that will run only those test files which reference modules that have changed since the last run. You can pass it to test.watch:
mix test.watch --stale
Clearing The Console Before Each Run
If you want mix test.watch to clear the console before each run, you can
enable this option in your config/dev.exs as follows:
config/config.exs
use Mix.Config

if Mix.env == :dev do
 config :mix_test_watch,
 clear: true
end
Excluding files or directories
To ignore changes from specific files or directories just add exclude: regexp
patterns to your config in config/config.exs:
config/config.exs
use Mix.Config

if Mix.env == :dev do
 config :mix_test_watch,
 exclude: [~r/db_migration\/.*/,
 ~r/useless_.*\.exs/]
end
The default is exclude: [~r/\.#/, ~r{priv/repo/migrations}].
Watching files with other extensions
To watch files with extensions other than the default (.erl, .ex, .exs, .eex, .leex, .heex, .xrl, .yrl, .hrl) add them to extra_extensions: in your config:
config/config.exs
use Mix.Config

if Mix.env == :dev do
 config :mix_test_watch,
 extra_extensions: [".rs"]
end
Compatibility Notes
On Linux you may need to install inotify-tools.
Desktop Notifications
You can enable desktop notifications with
ex_unit_notifier.
Alternatives
mix_test_interactive is based on mix test.watch but adds an interactive mode that allows you to dynamically change which tests to run.
Copyright and Licence
mix test.watch
Copyright © 2015 Louis Pilfold
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

MixTestWatch

Automatically run your Elixir project's tests each time you save a file.
Because TDD is awesome.

 Summary

 Functions

 run(args \\ [])

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 run(args \\ [])

 @spec run([String.t()]) :: no_return()

 start(type, args)

Callback implementation for Application.start/2.

MixTestWatch.Config

Responsible for gathering and packaging the configuration for the task.

 Summary

 Types

 t()

 Functions

 new(cli_args \\ [])

 Create a new config struct, taking values from the ENV

 Types

 t()

 @type t() :: %MixTestWatch.Config{
 clear: boolean(),
 cli_args: [String.t()],
 cli_executable: String.t(),
 exclude: [String.t()],
 extra_extensions: [String.t()],
 runner: atom(),
 tasks: [String.t()],
 timestamp: boolean()
}

 Functions

 new(cli_args \\ [])

 @spec new([String.t()]) :: t()

Create a new config struct, taking values from the ENV

MixTestWatch.MessageInbox

Helpers for managing process messages.

 Summary

 Functions

 flush()

 Clear the process inbox of all messages.

 Functions

 flush()

 @spec flush() :: :ok

Clear the process inbox of all messages.

MixTestWatch.Path

Decides if we should refresh for a path.

 Summary

 Functions

 watching?(path, config \\ Config.new())

 Functions

 watching?(path, config \\ Config.new())

 @spec watching?(String.t(), MixTestWatch.Config.t()) :: boolean()

MixTestWatch.PortRunner

Run the tasks in a new OS process via ports

 Summary

 Functions

 build_tasks_cmds(config)

 Build a shell command that runs the desired mix task(s).

 run(config)

 Run tests using the runner from the config.

 Functions

 build_tasks_cmds(config)

Build a shell command that runs the desired mix task(s).
Colour is forced on- normally Elixir would not print ANSI colours while
running inside a port.

 run(config)

Run tests using the runner from the config.

MixTestWatch.Watcher

A server that runs tests whenever source files change.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(_)

 Callback implementation for GenServer.init/1.

 run_tasks()

 start_link(args)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(_)

 @spec init(String.t()) :: {:ok, Keyword.t()}

Callback implementation for GenServer.init/1.

 run_tasks()

 start_link(args)

mix test.watch

A task for running tests whenever source files change.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

